Our panel of 91 professional philosophers has responded to

43
 questions about 
Color
287
 questions about 
Language
75
 questions about 
Beauty
51
 questions about 
War
4
 questions about 
Economics
284
 questions about 
Mind
110
 questions about 
Animals
27
 questions about 
Gender
34
 questions about 
Music
574
 questions about 
Philosophy
2
 questions about 
Action
31
 questions about 
Space
77
 questions about 
Emotion
36
 questions about 
Literature
96
 questions about 
Time
124
 questions about 
Profession
32
 questions about 
Sport
154
 questions about 
Sex
170
 questions about 
Freedom
69
 questions about 
Business
134
 questions about 
Love
117
 questions about 
Children
54
 questions about 
Medicine
5
 questions about 
Euthanasia
110
 questions about 
Biology
218
 questions about 
Education
67
 questions about 
Feminism
221
 questions about 
Value
244
 questions about 
Justice
75
 questions about 
Perception
39
 questions about 
Race
88
 questions about 
Physics
80
 questions about 
Death
81
 questions about 
Identity
68
 questions about 
Happiness
58
 questions about 
Punishment
58
 questions about 
Abortion
282
 questions about 
Knowledge
2
 questions about 
Culture
151
 questions about 
Existence
208
 questions about 
Science
374
 questions about 
Logic
24
 questions about 
Suicide
1280
 questions about 
Ethics
89
 questions about 
Law
105
 questions about 
Art
70
 questions about 
Truth
392
 questions about 
Religion
23
 questions about 
History

Question of the Day

Using ">" for material implication, (P > Q) is equivalent to each of (~ P v Q) and (Q v ~ P). So you can deduce either of those disjunctions. I think it's just a matter of convention to favor the first of them. The reader is expected to notice the equivalence of the two disjunctions.

Now, (Q v ~ P) is certainly not equivalent to (~ Q v ~ P). From Q, you can infer the first of those disjunctions but not the second. The disjunction (Q v ~ P) is equivalent to (P > Q), whereas the disjunction (~ Q v ~ P) is equivalent to (P > ~ Q) and (Q > ~ P).