Do false statements imply contradictions?
Consider the truth table for logical implication.
P...........Q.............P-> Q
T...........T.............. T
T...........F...............F
F...........T...............T
F...........F...............T
Notice that for a false statement P, the last two rows of the truth table, both Q and ~Q follow. No matter what Q is, it's truth follows from false statement P, as the third row shows. We can therefore take Q to be "P is true." From here it follows that a false statement P implies it's own truth, as the third row shows.
Do false statements really imply their own truth? Do they really imply contradictions? Are false statements also true?
Imagine that someone finds it useful to define a new term -- "mimp," say. The newly-defined term is a conjunction, i.e., it's used to link sentences together, and it works this way: "P mimp Q" is false when "P" is true and "Q" is false. Otherwise it's true. With this definition in hand, consider the sentence "New York city has fewer than 150,000 resident mimp the next US president will come from New York." Give our definition, this is true. Our definition of "mimp" guarantees that whenever "P" is false, "P mimp Q" is true. Looking at "→" this way may help with your puzzle. The symbol "→" (alternatively "⊃" ) is one that logicians found useful to define, and its definition is given by the rule above. Whether it matches any connective in natural language is open to doubt, and in particular, it does not mean what we mean by the phrase "logically implies." After all, "New York City has fewer than 150,000 residents" does not logically imply that the next US President will be from New York. It...
- Log in to post comments
- Read more about Do false statements imply contradictions?
- 2 comments
- Log in to post comments