I recently asked a question about the sorites paradox, and I received the following response, which seems to me to have a logical fallacy in it. In other words, the answer below does not seem to "explain" the paradox as much as it "contains" the paradox....
Here is the reply:
"Because the paradox itself results from commitments of common sense: (a) some number of grains is clearly too few to make a heap (maybe 15, as you say); (b) some number of grains is clearly enough to make a heap (maybe 15,000); and yet (c) one grain never makes the difference between any two different statuses (heap vs. non-heap, definitely a heap vs. not definitely a heap, etc.). Given commonsense logic, (a)-(c) can't all be true, but which one should we reject? Most philosophers who try to solve the paradox attack (c), but I certainly haven't seen a refutation of (c) that I'd call 'commonsense.'"
It seems that point (c) above presupposes that either we have 100% heap or 0% heap; however if we can have a number of grains such...