In mathematics numbers are abstract notions. But when we divide number say we do 1 divided by 2 i.e. ½ does this mean abstract notions are divisible. It gives me a feeling like abstract notions have magnitude but then it comes to my mind that abstract has no magnitude.1=1/2 + 1/2 can we say the abstract notion 1 is equal to the sum of two equal half abstract notions? How should I conceptualize the division? The other part related to abstract notion is that how is the abstract notion of number 1 different from the unit cm? how can we say that the unit cm is abstract when we consider it a definite length. How is the unit apple different from unit cm if I count apples and measure length respectively? I am in a fix kindly help me to sort out this. I will be highly- highly grateful to you.

You asked, "Does this mean that [these particular] abstract notions are divisible?" I'd say yes. But that doesn't mean they're physically divisible; instead, they're numerically divisible. Abstract objects have no physical magnitude, but that doesn't mean they can't have numerical magnitude. The key is not to insist that all addition, subtraction, division, etc., must be physical.

I'd say that the number 1 (an abstract object) is different from the cm (a unit of measure) in that the cm depends for its existence on the existence of a physical metric standard: for example, a metal bar housed in Paris or the distance traveled by light in a particular fraction of a second (where "second" is defined in terms of the radiation of a particular isotope of some element). In a universe with no physical standards, there's no such thing as the cm and nothing has any length in cm. By contrast, the number 1 doesn't depend for its existence on anything physical.

Apples are physical, material objects. Units of measure are founded on, and ontologically depend on, physical, material objects. Or so it seems to me.

Read another response by Stephen Maitzen
Read another response about Mathematics