#
Consider the mathematical number Pi. It is a number that extends numerically into infinity, it has no end and has no repeating pattern to its digits. Currently we have computers that can calculate Pi out to many thousands of digits but at a certain point we reach a limit. Beyond that limit those numbers are unknown and essentially do not exist until they are observed.
With that in mind, my question is this, if we could create a more powerful computer that could continue to calculate Pi beyond the current limit, and we started at exactly the same time to compute Pi out beyond the current limit on two identical computers, would we observe the computers generating the same numbers in sequence. If this is the case would that not infer that reality is deterministic in that unobserved and unknown numbers only become “real” upon being observed and that if identical numbers are generated those numbers have been, somehow, predetermined. Alternatively, if our reality was non-deterministic would that not mean that...

Consider the mathematical number Pi. It is a number that extends numerically into infinity, it has no end and has no repeating pattern to its digits. Currently we have computers that can calculate Pi out to many thousands of digits but at a certain point we reach a limit. Beyond that limit those numbers are unknown and essentially do not exist until they are observed.
With that in mind, my question is this, if we could create a more powerful computer that could continue to calculate Pi beyond the current limit, and we started at exactly the same time to compute Pi out beyond the current limit on two identical computers, would we observe the computers generating the same numbers in sequence. If this is the case would that not infer that reality is deterministic in that unobserved and unknown numbers only become “real” upon being observed and that if identical numbers are generated those numbers have been, somehow, predetermined. Alternatively, if our reality was non-deterministic would that not mean that...

Response from Allen Stairs on :

You're no doubt right that any computers we happen to have available will only compute π to a finite number of digits, though as far as I know, there's nothing to stop a properly-designed computer from keeping up the calculation indefinitely (or until it wears out.) But you add this:
"Beyond that limit those numbers are unknown and essentially do not exist until they are observed"
Why is that? Let's suppose, for argument's sake, that we'll never build a computer that gets past the quadrillionth entry in the list of digits in π. Why would than mean that there's no fact of the matter about what the quadrillion-and-first digit is? What does a computer's having calculated it or (at least as puzzling) somebody having actually seen the answer have anything to do with whether there's a fact of the matter?
To be a bit more concrete: the quadrillion-and-first digit in the decimal expansion of π is either 7 or it isn't. If it's 7, it's 7 whether anyone ever verifies that or not. If it's not 7, then it's...